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Experimental and Analytical Investigation of Transonic
Limit-Cycle Oscillations of a Flaperon
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Forced oscillation testing of a control surface on a rigid model is conducted in a transonic tunnel to identify
the possibility of limit-cycle oscillations (LCO) induced by aerodynamic sources. Identification is possible through
an energy concept by observing the direction of hysteresis loop in the test data. Two flow devices have also been
tested and their effectiveness in eliminating the LCO examined. In addition, test data of hinge moment response
in forced oscillation at various frequencies are analyzed through Fourier functional analysis to result in a
generalized forcing function in an indicial form. The latter is used in the structural equation of motion for the
control surface deflection angle. The resulting nonlinear equation is integrated by Hamming’s predictor-cor-
rector method to investigate the effect of structural freeplay. It is demonstrated that if the curves of hinge
moment response vs deflection angle in dynamic testing exhibit triple hysteresis, LCO is possible. However,
whether the latter actually occurs depends on the initial excitation. Structural freeplay is shown to induce LCO

at M = 0.97 for the model tested.

Nomenclature

constants representing lag effect,

see Eq. (2)

control surface mechanical damping
average value in the indicial formulation
hinge moment coefficient, positive to rotate
the trailing edge down, based on ¢ and §
reference values, sce Eq. (2)

mean control surface chord, 6.985 cm,
or 2.75 in.

constants associated with the zero-lag
response, see Eq. (2)

control surface polar moment of inertia
reduced frequency, wl/V

control surface hinge stiffness constant
reference length, ¢

freestream Mach number

number of Fourier terms

freestream dynamic pressure

control surface reference area, 208.39 cm?,
or 32.3 in.?

time

nondimensional time, tV//

freestream velocity

angle of attack

time step size

variation in angle of deflection, §, cos kt'
mean angle of deflection, —0.5 and

2 deg in the test

= region of structural freeplay

total angle of deflection, §,, + o
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amplitude of angle-of-deflection variation
kt'

dummy time integration variable

phase angle
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Introduction

HE history of the control surface buzz problem, or limit-

cycle oscillations (LCO), started around 1945, when aile-
ron vibration was first encountered in high-speed subsonic
flight.! In flight testing of the Lockheed P-80 jet fighter air-
craft, a low-amplitude aileron LCO was encountered at a
Mach number of 0.87, and proved hazardous at a higher Mach
number, resulting in permanent damage to the aileron.? As
itis understood, transonic LCO phenomena are mainly caused
by shock motion involving shock-induced flow separation.?
An excellent review of these phenomena was presented re-
cently by Cunningham.?

Although flight testing will provide accurate LCO charac-
teristics of a configuration, such information is fragmentary
and hardly ever systematic. Because LCO occurs within a
relatively narrow region in the flight envelope, it may not be
detected during flight testing. As a result, many control sur-
face LCO incidents occur. Therefore, a better method of LCO
detection is needed. ]

Virtually all the information about control surface oscilla-
tions comes from wind-tunnel and flight measurements. A
conventional wind-tunnel investigation involves the fabrica-
tion of sophisticated dynamic models, a very costly and time-
consuming process. As it was determined in the wind-tunnel
testing,* LCO of a control surface can be described as a single
degree-of-freedom oscillation. This result provides a basis to
the present method of testing. The present research combines
wind tunnel testing of a rigid model and theoretical aerody-
namic modeling to determine a general forcing function. Us-
ing this forcing function, the structural equation of motion is
integrated numerically to predict control surface LCO. This
approach is more cost-effective and time-efficient than testing
dynamic models. The present research was initiated to find
possible reasons of control surface LCO of a flight test vehicle
and to determine an effective way to eliminate it.
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Fig. 1 Test model configuration.

Test Facilities and Models

The test was conducted in the blowdown trisonic wind tun-
nel at Aero Industry Development Center (AIDC) with a 4
X 4 ft test section and perforated walls. The tunnel Mach
number could be varied from 0.3 to 4.0.

Test Model

A rigid half-model was chosen for easy installation of the
driving mechanism. The configuration included body, strake
(or leading-edge extension), wing, and horizontal tail (Fig. 1)
to represent a typical combat aircraft. The wing had a swept-
back angle of 32 deg and a span to mean chord ratio of 3:1.
The wing had a NACA 64 section of thickness ratio 5%. The
ratio of the control surface span to wingspan and the surface
area ratio were 0.6 and 0.1, respectively. A bridge of strain
gauges was installed on the drive axis of the control surface.
The design concept of the driving mechanism was that an
electrical servomotor was connected to a driving cam to give
harmonic motion to a rotating control shaft. The oscillation
amplitude of the control surface was controlled by the size of
the cam (Fig. 2).

Test Method and Procedures

The test Mach number varied from 0.9 to 1.05, and the
corresponding unit Reynolds number was 7 X 10%ft. Rough-
ness strips were applied at selected locations over the surfaces
of forebody, wing, and horizontal tail of the half-model to fix
transition of the boundary layer. The angle of attack was 2
deg. Two flaperon mean deflection angles were selected (—0.5
and 2 deg), and the maximum oscillation amplitude for both
flaperon deflection angles was 3 deg.

The control surface oscillation was controlled by varying
the rpm of the motor to produce different frequencies at
different Mach numbers. The hinge moment coefficient C,
and oscillation angle 8 were recorded by strain gauges and
the angular potentiometer, respectively. The high-frequency
strain gauges were mounted on the drive axis of the control
surface. The measured signals were filtered to reduce the
interference from the 60-Hz noise. The sampling rate of data
acquisition for an oscillographic recorder was set to 500 Hz.
The acquired data on PDP-11/44 was transmitted to a personal
computer for digital signal processing and data analysis.

Osclliation f
Direction

% : : t | 1-Cam
' INIRVEAY

Cé/E; SRANEY

N\

a)

Flaperon

b)
Fig. 2 Driving mechanism of the forced oscillation test rig: a) driving
mechanism design concept and b) arrangement of model contrel sur-
face and driving mechanism.

Method of Analysis

Aerodynamic Modeling

In the present research, we will determine the LCO-pro-
ducing forcing function (i.e., the hinge moment) separately
and solve the structural equation of motion afterwards. Then
the same forcing function can be repeatedly used, even when
the structural characteristics are changed.

Consider a flap oscillation:

8(t) = 8,, + 8, cos(kt’) )

where §,, is the mean angle of oscillation, §, is the oscillation
amplitude, & is the reduced frequency, and ¢’ is the dimen-
sionless time. Using a suitable set of aerodynamic hinge-mo-
ment responses to flap harmonic motions at different fre-
quencies, we can build up a general forcing function mentioned
above through Fourier functional analysis.>¢ The final expres-
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sion for the forcing function is in the nonlinear indicial form
and is given by

CUt) = Colt’ = 7 80), 8(D)],s + Co + 2 G,

) . " r d AF ;
< (Elj(sf + E3,~5,~) + 2 C, * f ( )/ % [1 - auer:}]i(l'»r)
TG T
o ds(r) LS f " A(AF),
— a, e it 7] o dr + Vv ,21 G = o dd
A . @

where AF is the amplitude function and C,,. is the average
value being a function of §,,, the mean angle about which the
oscillations in the test takes place. It should be noted that &
in Eq. (2) denotes a perturbation from &,,. The first term in
Eq. (2) is the amplitude of C,, when & is abruptly changed
to 8(0) at = = 0 and represents an initial value in the indicial
lift formulation.”

To perform the time integration in Eq. (2) for arbitrary
motions, a trapezoidal rule is chosen because the time step
used is very small. Note that for given 8 and § at time ¢, the
time integration in Eq. (2) must be performed by using an
equivalent frequency or amplitude and a phase angle because
the model coefficients have been obtained in frequency do-
main. At a given time of an arbitrary motion, the deflection
angle and its time rate, §, and 8., can be described by

8,(t) = 8, + & cos(kr + @) (3a)
8,(r) = =8k sin(kr + ¢) (3b)

By knowing the harmonic model’s mean angle of deflection
6,, and amplitude §,, an equivalent frequency k and an equiv-
alent phase angle ¢ at a given instantaneous time 7 can be
solved directly to give

3 |8,
k N 85 - (31 - 6/»1)2
. _ 4
¢ = tan"'[(8, — 8,)/(8/k)] — kT

To smooth out possible discontinuity in response when the
given motion has a sudden change in 8, a §, that is slightly
greater than the actual test amplitude is frequently used. It
should be emphasized that this does not change the instan-
taneous values of §, and §, in the actual motion. It merely
changes the values of k and ¢. Applicability of this concept
has been demonstrated in Refs. 5 and 6 for rigid model pitch-
ing motion.

Numerical Integration
The structural equation of motion is given by

I8 + C5 + kyd = q.5¢-Cy(t) (5)

where - = d/dt, and ¢ is in seconds and needs to be nondi-
mensionalized by V/I before integration, because C, is a func-
tion of #'. In the present application, / and k; are obtained
from a finite element analysis of the full-scale structure and
are given by I = 3.61 ft-lb-s*>, C = 0, and k;, = 187,500
ft-1b.

The right-hand side (RHS) of Eq. (5) contains highly non-
linear and time-dependent terms in the motion variable 8. To
accurately integrate this equation, Hamming’s predictor—cor-
rector method® is chosen. To start the integration, a fourth-
order Runge—Kutta technique is used to obtain the solutions
at three time steps before the predictor—corrector procedure
starts, providing that the initial conditions 8(0) and 5(0) are
given.

Results and Discussion

Wind-tunnel forced oscillation tests were conducted on a
fighter configuration with a large-span flaperon (Fig. 1) at
transonic speeds, and the hinge moments were measured cor-
responding to the instantaneous flaperon deflection angle.
Here, only data at M = 0.97, @« = 2 deg, and 6,, = —0.5
deg are presented and analyzed.

Data Reduction and Test Results

Tests were conducted under static condition (k = 0), wind-
off and wind-on forced oscillation at two flaperon mean angles
of deflection, and five reduced frequencies. Raw wind-on
oscillation test data contain 500 points over a number of cycles.
These data are first separated into a number of cycles of
oscillation. Then their amplitudes are adjusted slightly to at-
tain a constant angle of maximum deflection. Finally, the
ensemble-averaging over cycles is made to result in one com-
plete set of data in one cycle. The wind-off data are then
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[ A AN O Decreasing §
2 N & Increasing 8
N N Time integration
0.05 -
Ch 0 _
-0.05
i A
| k=0.051 (35Hz) s
JCo Y [ S SN S S U P R SO SO
-4 -3 -2 -1 0 1 2 3
a) 8 (deg.)
0.1 r
0.05 -
Ch 0
-0.05
: \ 0
L k=0.059 (40Hz)
O b L b L)
-4 -3 -2 -1 0 1 2 3
b) S(deg.)
0.1
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Fig. 3 Wind-tunnel test data and results of indicial integration for a
control surface oscillation at M = 0.97, « = 2 deg, and §,, = —0.5

deg.



908 LAN, CHEN, AND LIN

subtracted to provide the final dynamic hinge moment coef-
ficient C,,.

Results at M = 0.97 and §,, = —0.5 deg at three reduced
frequencies are presented in Fig. 3. Modeling results based
on the indicial formulation are also shown. Data are also taken
at two lower frequencies (20 and 25 Hz, not shown). But the
results do not show significant hysteresis as compared with
those at higher frequencies shown in Fig. 3. Because of the
sudden change in the hysteresis loop between 25-35 Hz, it
requires too many Fourier terms to provide a good model.
Since it is known from a dynamic model testing that limit-
cycle oscillation exists at higher frequencies, only the last three
sets of data at higher frequencies are used in the modeling.

As shown in Fig. 3, there are triple hysteresis loops in the
hinge moment response for £ = 0.051 and 0.059. The direc-
tion of the loop can be used to explain instability by using the
following energy integral with only the first harmonics in the
hinge moment response:

work = fﬁ ¢, dd = é [c,, cos(kt)
= ¢, sin(kt')] d(8, cos kt') = mc,, 8, (6)

The work input is positive if ¢,, > 0, and hence, the system
is unstable. If ¢, > 0, the hysteresis loop is clockwise. There-
fore, at higher Ifrequencies the flaperon motion is unstable
around §,,; but it becomes stable at higher values of § and

frequency (cf. curve in Fig. 3 for k = 0.073). This is a general
characteristic of limit-cycle oscillations.
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Fig. 4 Test results with vortex generators on the control surface at
M = 097, a = 2 deg, and §,, = —0.5 deg, and frequency of 40 Hz.
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Fig. 5 Test results with spoilers on the control surface at M = (.97,
« = 2 deg, and 8,, = —0.5 deg, and frequency of 40 Hz.

In Fig. 3, it is also shown that the static control effectiveness
(i.e., the slope of the C,, — & curves) is generally higher than
the equivalent or average dynamic values. This is consistent
with the test results of Ref. 9, where the equivalent dynamic
C, was defined as the resultant of the in- and out-phase com-
ponents of the first harmonic plus the in-phase component of
the second harmonic.

Various flow control devices have also been tested to de-
termine if they are effective in eliminating the clockwise hys-
teresis loop. Typical sets of results with vortex generators and
spoilers of triangular cross section (both located at the mid-
flaperon chord) are presented in Figs. 4 and 5, respectively,
for k = 0.059. Figure 4 shows that the vortex generators are
ineffective; whereas Fig. 5 shows that the spoilers eliminate
the LCO at the expense of slightly reducing the static control
effectiveness (cf. the static curves in Figs. 3 and 5). More
detailed measurements (including the static hinge moments)
with the vortex generators were not conducted as soon as the
vortex generators were found to be ineffective in controlling
the LCO. The present test technique was also used to optimize
the location and size of the spoilers. Using spoilers to reduce
or eliminate the LCO on a vertical tail have been investigated
in the past.!™!! Their effectiveness for the present configu-
ration have also been verified in flight testing.

Effect of Structural Freeplay by Analysis

The equation of motion [Eq. (5)] can be integrated to de-
termine the necessary mechanical damping C to eliminate the
LCO at given flight conditions. However, the effect of struc-
tural freeplay will be illustrated here instead.

A plot of typical load-deflection relation obtained by simple
static tests conducted on a wing-flap combination is presented
in Fig. 6. Freeplay is defined by extending the best straight
lines through zero load. System stiffness may then be obtained
from the slopes of the curves away from the zero point. In
addition to this flat spot type of freeplay, there are two other
types of freeplay effects, namely hysteresis type and cubic
type.'2 In the present model, only the flat type of freeplay is
considered. The structural stiffness constant k, in Eq. (5) is
replaced by a piecewise linear function k;(8). The piecewise
linear function k4(8) is given by

k., 8>,
ky(8) =90, —6,<8<8, (7)
k, &< —8,

87

In integrating the equation of motion [Eq. (5)], initial con-
ditions are needed. Figure 7 presents the ensuing flaperon
motion without structural freeplay after it is disturbed with
two sets of initial conditions at M = 0.97. Both sets of initial
conditions show oscillations converged smoothly to reach ap-
proximately — 0.5-deg offsets, where the model mean angle
of deflection lies. Oscillation with a larger initial velocity causes
the oscillation to be more symmetric about its final offset &
value. Referring to Fig. 3, we expect that the oscillations
should diverge within the indicated range of motion. This
apparent inconsistency can be explained by the fact that the
flap motion not only produces damping or undamping, but
also generates acrodynamic stiffness, which increases the sys-
tem frequency. At a higher frequency, the motion may be-
come stable again (Fig. 3c). For a nonlinear system to enter
an unstable motion, it must be positioned in the unstable
region on the phase plane. One way to change the system
frequency, and hence, the position in the phase plane, is to
introduce structural freeplay. Realistically, zero freeplay is
an ideal condition. It is therefore imperative to simulate flap-
eron oscillations in a nonzero freeplay environment.

As depicted in Fig. 8, flaperon LCO is predicted when a
structural freeplay of 1 deg is assumed. It can be clearly seen

from Figs. 8a and 8b that a hinge moment coefficient of about

—0.01 corresponding to a 0 deg of initial & builds up the LCO-
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Fig. 7 Time history of flaperon oscillation at M = 0.97, @ = 2 deg,
and 2 = 5000 ft.

starting conditions, which is reasonable as the angle of attack
is +2 deg to provide a tendency of upward motions. From
the time history, it is apparent that higher frequency terms
are present in the solution, but gradually decay as the limit
cycle is established around ¢t = 0.35 s. The reduced frequency
of LCO is approximately equal to a constant value of 0.067
(34.78 Hz), well within the frequency range covered by the
present model (from k = 0.051 at 35 Hz to k = 0.073 at 52.5
Hz) at M = 0.97. The LCO occurs with respect to a mean
angle of roughly — 0.5 deg, with the amplitude staying around
1.1 deg throughout the time simulated. On the phase plane
(Fig. 8c), stable limit cycles are represented by closed curves.
Figure 9 depicts the results obtained at higher initial deflec-
tions with an initial velocity. The oscillation diverges in a few
cycles after started. This set of initial conditions, being outside
the closed curves on the phase plane, induces unstable motion
and a limit-cycle oscillation cannot be attained.

Figure 10 presents LCO under the same initial conditions
as in Fig. 8, except the structural freeplay was set at 0.5 deg.
The results show a much smaller amplitude of oscillation,
which is not constant and chaotic to some extent. The oscil-
lation takes place roughly about the model mean angle of
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Fig. 8 Time history of flaperon oscillation at M = 0.97, @ = 2 deg,
and k = 5000 ft. 5(0) = 0 deg, 6(0) = 0 deg/s, 6, = 1 deg: a) variation
of flaperon deflection, b) variation of hinge moment, and c) phase
plane diagram.
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Fig. 9 Time history of flaperon oscillation at M = 0.97, a = 2 deg,
and h = 5000 ft.
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Fig. 10 Flaperon LCO at M = 0.97 and k& = 5000 ft. 6(0) = 0 deg,

8(0) = 0 deg/s, 8, = 0.5 deg: a) variation of flaperon deflection and
b) phase plane diagram.
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Fig. 11 Time history of flaperon LCO at M = 0.97, @ = 2 deg, and
h = 5000 ft with different initial conditions.

deflection. Figure 11 illustrates the predicted LCO with 0.5
deg of freeplay, at nonzero initial deflections and velocities.
It is found that the initial oscillation is developed in a similar
fashion before ¢+ = 0.5 s, and then the one started with a
higher initial velocity is quickly reduced to one with much
smaller amplitude. The one with a lower initial velocity ap-
proaches a smaller amplitude in a slower manner. Again,
these examples illustrate different phenomena attainable from
different positions in the phase plane in a nonlinear system.

Conclusions

Forced oscillation testing of a flaperon on a rigid half-model
of a fighter configuration was conducted to determine the
properties of transonic limit-cycle oscillations. Instability was
predicted by a clockwise hysteresis loop in the hinge moment
response to flap deflection angle. Two flow control devices
(i.e., the vortex generators and spoilers) have also been tested
to eliminate the instability. Only the spoilers were found to
be effective. The test technique allowed one to determine the
best location and size of these spoilers. Test results were
analyzed through Fourier functional analysis to establish a
general forcing function for the control surface hinge moment.
The forcing function was expressed in the form of nonlinear
indicial integrals and could be used at frequencies other than
the test frequencies. By integrating the structural equation of
motion describing the control surface motion, simulation of
control surface LCO time history was carried out by using
Hamming’s predictor—corrector method. The results of time
history simulation indicated buzz might occur at M = 0.97
with the existence of structural freeplay. Because of mathe-
matical nonlinearity, the initial conditions to induce limit-
cycle oscillations were not obvious. A sure way to predict the
possibility of control surface buzz was to examine the wind-
tunnel data of forced oscillation at different frequencies. A
triple loop in the plot of hinge moment coefficient vs deflec-
tion angle would indicate the existence of limit-cycle oscil-
lation.

References

'Lambourne, N. C., “Flutter in One Degree of Freedom,” NATO
AGARD Manual on Aeroelasticity, Vol. 5, Feb. 1968, Chap. 5.

*Brown, H. H., Rathert, G. A., Jr., and Clousing, L. A., *Flight-
Test Measurements of Aileron Control-Surface Behavior at Super-
critical Mach Numbers,” NACA RM A7A15, April 1947.

*Cunningham, A. M., Jr., “‘Practical Problems: Airplanes,” Un-
steady Transonic Aerodynamics, edited by D. Nixon, Vol. 120, Prog-
ress in Astronautics and Aeronautics, AIAA, Washington, DC, 1989,
Chap. 3.

‘Erickson, A. L., and Mannes, R. L., “Wind-Tunnel Investigation
of Transonic Aileron Flutter,” NACA RM A9B2§, June 1949,

SChin, S., and Lan, C. E., “Fourier Functional Analysis for Un-
steady Aerodynamic Modeling,” AIAA Journal, Vol. 30, No.9, 1991,
pp- 2259-2266.

*Hu, C. C,, and Lan, C. E., “Unsteady Aerodynamic Models for
Maneuvering Aircraft,” AIAA Paper 93-3626, Aug. 1993.

"Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelas-
ticity, Addison—Wesley, Cambridge, MA, 1955, Chaps. 5 and 6.

¥Gerald, C. F., and Wheatley, P. O., Applied Numerical Analysis,
Addison—-Wesley, Reading, MA, 1984.

“Erickson, A. L., and Robinson, R. C., ““‘Some Preliminary Results
in the Determination of Aerodynamic Derivatives of Control Surfaces
in the Transonic Speed Range by Means of a Flush-Type Electrical
Pressure Cell,” NACA RM A8HO03, Oct. 1948.

WHerr, R. W., Gibson, F. W., and Osborne, R. S., “Some Effects
of Flow Spoilers and Aerodynamic Balance on the Oscillating Hinge
Moments for a Swept Fin-Rudder Combination in a Transonic Wind
Tunnel,” NACA RM L58C28, May 1958.

""Fuglsang, D. F., Brase, L. O., and Agrawal, S., “A Numerical
Study of Control Surface Buzz Using Computational Fluid Dynamic
Methods,” AIAA Paper 92-2654, June 1992.

"Woolston, D. S., Runyan, H. L., and Andrews, R. E., “‘An
Investigation of Effects of Certain Types of Structural Nonlinearities
on Wing and Control Surface Flutter,” Journal of the Aeronautical
Sciences, Vol. 24, No. 1, 1957, pp. 57-63.



